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Abstract

In this work we compute the CP-violating currents of the right-handed stops

and Higgsinos, induced by the presence of non-trivial vacuum expectation values

of the Higgs �elds within the context of the minimal supersymmetric extension of

the Standard Model (MSSM) with explicit CP-violating phases. Using the Keldysh

formalism, we perform the computation of the currents at �nite temperature, in

an expansion of derivatives of the Higgs �elds. Contrary to previous works, we

implement a resummation of the Higgs mass insertion e�ects to all orders in pertur-

bation theory. While the components of the right-handed stop current j
�

etR
become

proportional to the di�erence H2@
�H1�H1@

�H2 (suppressed by ��), the Higgsino

currents, j
�

eHi

; present contributions proportional to both H2@
�H1 � H1@

�H2. For

large values of the charged Higgs mass and moderate values of tan� the contribution

to the source proportional to H2@
�H1+H1@

�H2 in the di�usion equations become

sizeable, although it is suppressed by the Higgsino number violating interaction rate

�
�1=2
� . For small values of the wall velocity, 0:04 <

� v!
<
� 0:1, the total contribution

leads to acceptable values of the baryon asymmetry for values of the CP-violating

phases 'CP in the range 0:04 <
� j sin'CP j

<
� 1. Finally, we comment on the relevance

of the latest results of Higgs searches at LEP2 for the mechanism of electroweak

baryogenesis within the MSSM.

yPresent address: Department of Physics, University of Virginia, 382 McCormick

Road, P.O. Box 400714, Charlottesville, VA 22904-4714.



1 Introduction

The origin of the baryon asymmetry of the Universe is one of the most important open

questions in cosmology and particle physics. It has been long understood that, in order to

generate the observed baryon asymmetry, three requirements [1] need to be ful�lled: the

non-conservation of baryon number, CP-violation and the existence of non-equilibrium

processes [2]. Interestingly enough, at temperatures above the electroweak phase tran-

sition temperature, Tc, the Standard Model ful�lls these requirements. Baryon number

violation is induced by anomalous [3] sphaleron processes [4], which are suppressed at zero

temperature, but whose rate grows linearly with the temperature above Tc [5]. The non-

conservation of CP is an essential property of the Standard Model, and non-equilibrium

processes may be obtained through the expansion of bubbles of true vacuum, which occurs

after the electroweak phase transition.

In spite of ful�lling all the desired properties, the rate of the CP-violating processes

in the Standard Model (SM) is too small to induce the required baryon asymmetry [6, 7].

Moreover, the preservation of the generated baryon asymmetry after the electroweak

phase transition requires a strongly �rst order phase transition 1, with v(Tc)=Tc >
� 1,

where v(Tc) is the Higgs vacuum expectation value at the critical temperature Tc. For

the experimentally allowed values of the Higgs mass, this requirement is not ful�lled in

the Standard Model [9].

Supersymmetric particles lead to new radiative corrections to the Higgs e�ective po-

tential at �nite temperature [10]-[12]. Light boson �elds with relevant couplings to the

Higgs �eld may induce a stronger �rst order electroweak phase transition [13]-[28]. The

supersymmetric partners of the top quark are the only new bosons which couple in a

relevant way to the Higgs boson which acquire vacuum expectation value and hence play

a relevant role in de�ning the strength of the phase transition 2. For su�ciently small

values of the stop masses the strength of the phase transition is enhanced [13, 21]. In

order to get values of v(Tc)=Tc � 1, however, the right handed stop soft supersymmetry

breaking squared mass parameter, m2
U
, should be small or even slightly negative and the

stop mixing mass parameter Xt = jAt � �c= tan �j must be smaller than � 0.6 mQ, with

mQ the left-handed stop supersymmetry breaking mass parameter. Under these condi-

tions, and for mQ
<
�1{3 TeV, a strongly �rst order phase transition may be obtained up

to values of the lightest CP-even Higgs boson mass as high as � 110{115 GeV [21, 28].

Moreover, supersymmetric particles lead to new, relevant CP-violating sources for the

generation of the baryon asymmetry [29]. Several computations have been performed [30]-

[42] in recent years, showing that if the CP-violating phases associated with the chargino

mass parameters are not too small, these sources may lead to acceptable values of the

baryon asymmetry. In this work, we shall perform a computation of these new CP-

violating sources in an expansion in derivatives of the Higgs background �elds. Similarly

to Ref. [31], we shall use the Keldysh formalism [43] for the computation of the CP-

1An alternative dynamics for preserving the generated baryon asymmetry has been explored in Ref. [8].
2 Although bottom and tau Yukawa couplings become large for large values of tan �, the bottom

and tau super�eld couplings to the Higgs boson combination which acquires vacuum expectation value,
� = H

0

1
cos �+H

0

2
sin�, remains small, apart from an enhancement of the �-trilinear coupling to left and

right sbottoms and staus, which increases the corresponding mixings, but does not lead to an enhancement
of the phase transition strength.

2



violating currents at �nite temperature. We improve the computation of Ref. [31] in

two main aspects. On the one hand, instead of computing the temporal component of

the current in the lowest order of Higgs background insertions, we compute all current

components by performing a resummation of the Higgs mass insertion contributions to

all order in perturbation theory. The resummation is essential since it leads to a proper

regularization of the resonant contribution to the temporal component of the current

found in Ref. [31] and leads to contributions which are not suppressed for large values

of the charged Higgs mass. On the other hand, we consider, in the di�usion equations,

the contribution of Higgsino number violating interaction rate [42] from the Higgsino �

term in the lagrangian, ��, that was considered in our previous calculations in the limit

��=T !1.

This article is organized as follows. In sections 2 and 3 we present the detailed deriva-

tion of the CP-violating currents for the cases of right-handed top squarks (j�
~tR
) and

charginos (j�
e

H

), respectively, by making use of the Keldysh formalism and resumming to

all order in Higgs background insertions. These two sections deal with all the technical

details of the computation, with the main results given in Eqs. (2.17), (3.16) and (3.18).

In section 4 we present explicit, analytical, solutions to the di�usion equations and an ex-

plicit expression for the baryon asymmetry in the broken phase after the phase transition

in the MSSM. In section 5 we exhibit the results of a numerical analysis of our solutions.

A discussion of present Higgs mass constraints is made in section 6, and in section 7 we

present our conclusions and outlook.

2 The squark sector

Our aim in this section is to compute the Green functions for left-handed (etL(x)) and right-
handed (etR(x)) stop �elds, describing the propagation of these scalars in the presence of

a bubble wall. The bubble wall is assumed to be located at the space-time point z,

where there is a non-trivial background of the MSSM Higgs �elds, Hi(z), which carries

dimensionful CP-violating couplings to the left- and right-handed stops. We shall use

these Green functions to compute the right-handed and left-handed stop currents at the

point z. The starting point is the lagrangian for the stop system:

L(x) =
��@�etL(x)��2 + ��@�etR(x)��2 + � et �L(x) et �

R
(x)

�M(x)

� etL(x)etR(x)
�
; (2.1)

whereM is the stop squared mass matrix which depends, through the Higgs background,

on the space-time point.

Clearly this is not a free lagrangian, since the mass matrix depends on the space-time

coordinates, and we must identify the free and perturbative parts out of it. In order

to make such a selection we will expand the mass matrix around the point z� � (~r; t)

(the point where we are calculating the currents in the plasma frame) up to �rst order in

derivatives as,

M(x) =M(z) + (x� z)�M�(z) ; (2.2)
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where we use the notationM�(z) � @M(z)=@z�, and we can split the initial Lagrangian

as:

L0(x) =
��@�etL(x)��2 + ��@�etR(x)��2 + � et �L(x) et �

R
(x)

�M(z)

� etL(x)etR(x)
�

Lint = (x� z)�
� et �

L
(x) et �

R
(x)

�M�(z)

� etL(x)etR(x)
�
: (2.3)

Let U(z) 2 SU(2) be the matrix that diagonalizesM(z). We can then rewrite L0 and

Lint as:

L0 =

2X
i=1

�j@��i(x)j2 +m2

i
(z) j�i(x)j2

	
;

Lint = (x� z)�
� et �

L
(x) et �

R
(x)

�
U(z)M�(z) Uy(z)

� etL(x)etR(x)
�
; (2.4)

where m2
i
(z), �i(z) (i = 1; 2) are the eigenvalues and eigenvectors of M(z). Note that the

description in terms of the mass eigenstates �i(z) is useful so far the Higgs �eld variations

are small for propagation lengths of the order of the inverse of the width of the stop �elds,

��1. Under these conditions, namely Lw�=vw >
� 1, with Lw and vw being the bubble wall

width and velocity, respectively, an expansion in derivatives is justi�ed [31].

Now we can write down the two point Green function for the �eld (�1(x) �2(x))
T
in

matrix form:

G�(x; y; z) = G(x; y; z) +

Z
d4w (w � z)�G(x;w; z) U(z)M�(z)Uy(z) G(w; y; z) + : : :

(2.5)

where x and y are assumed to be close to z, the point at which the current is being

evaluated and around which the expansion is being performed (jx � zj; jy � zj � ��1),

G(x; y; z) is the two by two diagonal free Green function of the stop mass eigenstates with

masses mi(z), the trace over internal (a = 1; 2) indices being understood in Eq. (2.5).

Explicitly, the free Green functions for each of the two stop eigenstates can be written

as [43]:

G11

i
= P+

i
+ fB

�
P+

i
� P�

i

�
G12

i
=

�
�(p0) + fB

� �
P+

i
� P�

i

�
G21

i
=

�
�(�p0) + fB

� �
P+

i
� P�

i

�
G22

i
= �P�

i
+ fB

�
P+

i
� P�

i

�
; (2.6)

where fB � nB(jp0j) is the Bose-Einstein distribution function, which contains the depen-

dence on the temperature T ,

P�
i
=

1

p2
0
� ~p2 �m2

i
(z)� 2i�

et
jp0j ; (2.7)

and �
et
is the stop width which can be taken to be �

et
� �s T independently of the stop

mass eigenstate.
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Since we need to calculate the CP-violating currents induced by the right-handed stop

states, we should �rst go to the weak eigenstate basis. The Green functions in the weak

eigenstate basis can be obtained from the ones given above, which were computed in the

basis of mass eigenstates, by the following expression

G
et(x; y; z) = Uy(z)G�(x; y; z)U(z) :

Therefore, the current for right-handed stops takes the form:

j
�

~tR
(z) = lim

x;y!z

Tr

"
P2
@G

et(x; y; z)

@(x� y)�

#
; (2.8)

where P2 = (�0 � �3)=2, �i being the two by two Pauli matrices and �0 the two by two

identity matrix, is a projection matrix which allows to separate the current induced by

the right-handed stops from the one induced by the left-handed stops. Nevertheless, since

baryon number is conserved at this point, the total CP-violating currents induced by left-

and right-handed top squarks must be zero, Tr[@�G
et(x; y)] = 0, and therefore

j
�

~tR
(z) = �1

2
lim
x;y!z

Tr

"
�3
@G

et(x; y; z)

@(x� y)�

#
: (2.9)

After integrating over the w space-time variable, and going to momentum space, we can

write the current in terms of free Green functions of the mass eigenstates at the point z:

j
�

~tR
(z) =

1

2

Z
d4p

(2�)4
p�Tr

�
�3Uy(z)G�(p; z)U(z)M� (z)Uy(z)G(p; z)U(z)

� �3 Uy(z)G(p; z)U(z)M� (z)Uy(z)G�(p; z)U(z)� (2.10)

since the contribution induced by the linear term in z in Eq. (2.5) trivially vanishes

because G(p; z) only depends on jpj and p0. We are using the notation G�(p; z) =

@G(p; z)=@p� . Note that in the above expression only o�-diagonal terms of the derivatives

of the mass matrixM�(z) at the point z give a non-vanishing contribution. We shall de-

note by fM�(z), the matrix containing only the derivative of the o�-diagonal terms of the

matrixM(z).

The current could be simpli�ed a little bit more by using:

Uy(z)D U(z) = �1D�1 +
1

2
Tr[U(z)]Tr[D�3]Uy(z)�3 (2.11)

where D is a diagonal matrix. Then j�
etR
(z) can be written as:

j
�

~tR
(z) =� i

4
Tr[U(z)]Tr

hfM�(z)U(z)
iZ d4p

(2�)4
p�Tr [�1G(p; z)�2G

�(p; z)]

=
1

4
Tr[U(z)]Tr

hfM�(z)U(z)
iZ d4p

(2�)4
p��ijGi(p; z) G

�

j
(p; z) : (2.12)
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Expanding Gi in terms of P�
i
one gets:

ji~tR(z) =
8C i

3�
Im

�Z
1

�1

dp0

2�
(1 + 2fB)

Z
1

0

dp

2�
p
4(P+

1
(p; z)P+

2
(p; z))2

�
j0~tR(z) =�

2C0

�
Im

�Z
1

�1

dp0

2�
jp0j

�
(1 + 2fB)

�
jp0j+ i�

et

� Z 1

0

dp

2�

�
P+

1 (p; z)P
+

2 (p; z)
�2

�
Z
1

0

dp

2�

f 0
B

m2
1 (z)�m2

2 (z)
P+

1 (p; z)P
�

2 (p; z)

��
(2.13)

where f 0
B
is the derivative of fB with respect to its argument and C� is given by

C� = (m2

1 (z)�m2

2 (z))Tr[U(z)]Tr
h fM�(z)U(z)

i
: (2.14)

Using now the particular value of the squared mass matrixM for the stop system,

M(z) =

�
m2
Q
+ h2

t
H2

2
(z) ht (AtH2(z)� ��cH1(z))

ht (A
�

t
H2(z)� �cH1(z)) m2

U
+ h2

t
H2

2
(z)

�
; (2.15)

where ht is the top-quark Yukawa coupling, At the left-right stop mixing parameter, and

�c the complex Higgsino mass parameter, de�ned as �c � � exp(i'�), with � real (positive

or negative). In the above, we have neglected corrections O(g2). In this approximation,

the above constant vector C�, Eq. (2.14), can be written as:

C� = 2h2
t
Im(At �c) fH2(z)H

�

1
(z)�H1(z)H

�

2
(z)g : (2.16)

Hence, in order to compute the CP-violating currents induced by the stop �elds, the

momentum integrals should be performed. Due to the form of the free Green functions,

Eq. (2.6), the integral over the temporal component of the momentum cannot be per-

formed by standard integration methods in the complex plane. It is therefore better to

perform the integration over the spatial components of the momentum and express the

results as an integral function over p0, which admits a simple physical interpretation. In

order to perform the integrals of the spatial components of the momentum, one should

note that all functions depend only on jpj2. Therefore, the angular integration can be

trivially performed and the integral over the modulus jpj of a function F(jpj) can be writ-

ten as half the integral on the whole real plane of the function F(x), with F(x) = F(�x).
Doing this, we can perform the spatial momentum integrals in Eq. (2.13) by means of

standard techniques of integration in the complex plane and the residues theorem, and

we can cast the resulting currents as:

j
�

~tR
(z) = h2

t
Im(At �c) fH2(z)H

�

1 (z)�H1(z)H
�

2 (z)g
�
FB(z) + �� 0GB(z)

	
(2.17)

where

FB(z) =
1

6�2
Re

Z
1

0

dp0 (1 + 2 fB)

�
1

z1 + z2

�3

GB(z) =
1

3�2
Re

Z
1

0

dp0 p0f 0
B

(�
1

z1 + z2

�3

� 3

m2
1 (z)�m2

2 (z)

�
z1

m2
1 �m2

2 � 4i�
et
p0

+
z2

m2
1 �m2

2 + 4i�
et
p0

��
(2.18)
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and zi is de�ned as the pole of P+

i
, i.e.

zi(p
0) =

q
p0 (p0 + 2 i�

et
)�m2

i
(z) (2.19)

with positive real and imaginary parts satisfying Re(zi) = �
et
p0=Im(zi).

3 The chargino sector

For the case of the charged gaugino-Higgsino system we will follow similar steps as the

ones we performed before to compute the stop current. In this case the role of right-

handed stops is played by the (left- and right-handed) Higgsinos. The starting point is

the lagrangian:

L(x) = ehc(x)@��ehc(x) +fW c(x)@�
�fWc(x) +

�fW c(x) ehc(x)�M(x)

 fWc(x)ehc(x)
!

(3.1)

where

ehc =
 eh+2eh�

1

�

!
; fWc =

 fW+fW�

�

!
:

From the structure of the chargino mass matrix we can write the lagrangian in the fol-

lowing form:

L(x) = R(x)y��@� R(x) +  L(x)
y��@

� L(x)

+ R(x)
yM(x) L(x) +  L(x)

yMy(x) R(x) (3.2)

where in this expression we have used

 R(x) =

 fW+eh+2
!
;  L(x) =

 fW�eh�1
!
:

Expanding the masses around the point z and splitting the lagrangian into a free and

a perturbative part, we can write, to �rst order in derivatives:

L0(x) = R(x)
y��@

� R(x) +  L(x)
y��@

� L(x)

+ R(x)
yM(z) L(x) +  L(x)

yMy(z) R(x)

Lint(x) =(x� z)�
�
 R(x)

yM�(z) L(x) +  L(x)
yMy

�
(z) R(x)

	
: (3.3)

Like for the scalar case we will diagonalize M(z) by means of the matrices U(z),
V(z) 2 SU(2). Additional phase rede�nition can be performed in order to bring the mass

7



eigenstates to be real and positive. In general, the lagrangian can be written as:

L0(x) ='R(x)
y��@

�'R(x) + 'L(x)
y��@

�'L(x)

+'R(x)
y

�
m1(z) 0

0 m2(z)

�
'L(x) + 'L(x)

y

�
m�

1(z) 0

0 m�

2(z)

�
'R(x)

Lint(x) =(x� z)�
�
'R(x)

yU(z)M�(z)Vy(z)'L(x) + 'L(x)
yV(z)My

�
(z)Uy(z)'R(x)

	
(3.4)

where mi(z) are the eigenvalues of M(z) and

'R(x) = U(z) R(x); 'L(x) = V(z) L(x)

are the mass eigenstates at the point z.

At this point we can write the Green functions describing the propagation of the right-

and left-handed fermion ' �elds, SRR
'

and SLL
'
, respectively, as

SRR
'

(x; y; z) =SRR(x; y; z)

+

Z
d4w(w � z)�SRR(x;w; z)U(z)M�(z)Vy(z)SLR(w; y; z)

+

Z
d4w(w � z)�SRL(x;w; z)V(z)My

�
(z)Uy(z)SRR(w; y; z)

SLL
'
(x; y; z) =SLL(x; y; z)

+

Z
d4w(w � z)�SLL(x;w; z)V(z)My

�
(z)Uy(z)SRL(w; y; z)

+

Z
d4w(w � z)�SLR(x;w; z)U(z)M�(z)Vy(z)SLL(w; y; z) (3.5)

where SLL, SRR, SLR and SRL denote the left-left, right-right, left-right and right-left

Green functions of free fermions with mass mi(z). In the approximation where both

fermionic widths are equal, we can rewrite the free fermionic Green functions in terms of

bosonic ones as:

SRR(p; z) =��p
�G(p; z) SRL(p; z) =

�
m1(z) 0

0 m2(z)

�
G(p; z)

SLR(p; z) =

�
m�

1(z) 0

0 m�

2(z)

�
G(p; z) SLL(p; z) =��p

�G(p; z) (3.6)

where the free Green functions G(p; z) are given by (2.6) with fB ! fF � �nF (jp0j), nF
being the Fermi-Dirac distribution function, mi(z) ! jmi(z)j, and �

et
! �

eH
� �W T .

Using the relations between Green functions in the mass and weak eigenstate basis, as we

did in the stop case, we obtain in the weak eigenstates basis,

SRR
 

(p; z) =Uy(z)SRR
'

(p; z)U(z) SRL
 

(p; z) =Uy(z)SRL
'

(p; z)V(z)
SLR
 

(p; z) =Vy(z)SLR
'

(p; z)U(z) SLL
 
(p; z) =Vy(z)SLL

'
(p; z)V(z) : (3.7)
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The Higgsino currents can now be de�ned as:

j
�

e

H�

(z) = lim
x;y!z

�
Tr
�
P2�

�SRR
 

(x; y; z)]
��Tr

�
P2�

�SLL
 
(x; y; z)]

�	
(3.8)

where P2 is the projection operator used in Eq. (2.8).

By replacing (3.6) and (3.7) in these currents, and taking into account that, as hap-

pened in the stop case, the contribution of the linear term in z in Eq. (3.5) is zero by

symmetry reasons, one gets 3

j
�

e

H�

(z) =
1

2

Z
d4p

(2�)4

�
p� Tr

�
�3
�
Uy(z)G(p; z)U(z)M�(z)M

y(z)Uy(z)G�(p; z)U(z)

�Uy(z)G�(p; z)U(z)M(z)My

�
(z)Uy(z)G(p; z)U(z)

�Vy(z)G(p; z)V(z)My

�
(z)M(z)Vy(z)G�(p; z)V(z))

� Vy(z)G�(p; z)V(z)My(z)M�(z)Vy(z)G(p; z)V(z)
��

+Tr
�
Uy(z)G(p; z)U(z)(M�(z)My(z)�M(z)M� y(z))Uy(z)G(p; z)U(z)

� Vy(z)G(p; z)V(z)(M� y(z)M(z)�My(z)M�(z))Vy(z)G(p; z)V(z)�	 : (3.9)

The chargino mass matrix is given by

M(z) =

�
M2 u2(z)

u1(z) �c

�
(3.10)

where we have de�ned ui(z) � gHi(z). The diagonalizing matrices are [32]

U =
1p

2�(� + �)

�
�+� M2 u1 + ��

c
u2

� (M2 u1 + �c u2) � + �

�
V =

1p
2�( �� + �)

�
�� + � M2 u2 + �c u1

� (M2 u2 + ��
c
u1) �� + �

�
; (3.11)

where �eld rede�nitions have been made in order to make the Higgs vacuum expectation

values, as well as the weak gaugino mass M2, real,

� =(M2

2
� j�cj2 � u2

1
+ u2

2
)=2

�� =(M2

2 � j�cj2 � u22 + u21)=2

� =
�
�2 + jM2 u1 + ��

c
u2j2

�1=2
; (3.12)

and the mass eigenvalues are given by

m1(z) =
(� + � + u21(z))M2 + u1(z)u2(z)�

�

cp
(� + �)( �� + �)

m2(z) =
(� + �� u22(z))�c � u1(z)u2(z)M2p

(� + �)( ��+ �)
: (3.13)

3Notice that the phases 'i of the mass eigenvalues, mi(z) = jmi(z)j expfi'i(z)g can be absorbed in a
rede�nition of the matrix V(z), as V(z) ! diag(expfi'1(z)g; expfi'2(z)g)V(z). As required, the currents
(3.9) do not depend on this phase rede�nition.
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Using these expressions, and the property 2� = jm1(z)j2 � jm2(z)j2, we can cast the

Higgsino currents in the following general form:

j
�

e

H+

=
Im(M2 �c)

�

�
[u2(z)u

�

1(z)� u1(z)u
�

2(z)]

Z
d4p

(2�)4
p� Gi(p; z)�

ijG�

j
(p; z) (3.14)

+
u22(z)� u21(z)

2�
[u2(z)u

�

1(z) + u1(z)u
�

2(z)]

Z
d4p

(2�)4
p�Gi(p; z)

�
�ij � �ij1

�
G�

j
(p; z)

�
where �12 = +1, and

j
�

e

H�

=
Im(M2 �c)

2�
[u2(z)u

�

1(z) + u1(z)u
�

2(z)]

Z
d4p

(2�)4
p�

�
�
[(G2 +G1)(G2 �G1)]

�
+

�
�+ ��

�

�
(G2 �G1) (G

�

2
�G�

1
)

�
: (3.15)

Notice that while the �rst term in j
�

e

H+

is similar to the squark current j�
~tR

(it is

proportional to u2(z)u
�

1
(z) � u1(z)u

�

2
(z)), the second term in j

�

e

H+

and the current j�
e

H�

have no counterpart in the scalar sector. The contribution proportional to u2(z)u
�

1(z)�
u1(z)u

�

2
(z) is proportional to the variation �� of the angle � along the bubble wall. Since

�� <
� 10�2, the corresponding contribution is suppressed. The contribution proportional

to u2(z)u
�

1(z) + u1(z)u
�

2(z), instead, is not a�ected by this suppression factor, although it

is suppressed, for large values of tan �, as 1= tan �.

Now the integration over the spatial components of the momentum can be performed

as in the previous section and the �nal currents can be cast as follows. For the current

j�
e

H+

one obtains,

j�
e

H+

(z) =2 Im(M2 �c)
�
[u2(z)u

�

1
(z)� u1(z)u

�

2
(z)]

�FF (z) + �� 0GF (z)
	

+
�
u2
2
(z)� u2

1
(z)
�
[u2(z)u

�

1
(z) + u1(z)u

�

2
(z)]HF (z)

	
(3.16)

where the functions FF ; GF are de�ned in (2.18) after changing fB ! fF , mi(z)! jmi(z)j
and �

et
! �

eH
, and

HF (z) =
1

8�2
Re

Z
1

0

dp0 (1 + 2 fF )
1

z1 z2

�
1

z1 + z2

�3

(3.17)

with zi(z) de�ned in (2.19), after changing mi(z) ! jmi(z)j and �
et
! �

eH
. Note that,

being proportional to u22(z)�u21(z) � �u2(z) cos 2�(z), the second term of j�
e

H+

vanishes at

the lowest order in the Higgs �eld insertions, in agreement with our previous results [31],

and it also vanishes in the case tan � = 1.

For the current j�
e

H�

one obtains,

j�
e

H�

(z) = 2 Im(M2 �c) [u2(z)u
�

1(z) + u1(z)u
�

2(z)]
�KF (z) + 2

�
�+ ��

� HF (z)
	

(3.18)

where the function KF is de�ned as,

KF (z) = �
1

4�2
Re

Z
1

0

dp0 (1 + 2 fF )
1

z1 z2

�
1

z1 + z2

�
: (3.19)
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Note that the current (3.18) appears to leading order in the Higgs mass insertion and it

is not suppressed by ��. However, j�
e

H�

is suppressed for large values of tan � (which are

needed to push the Higgs mass beyond the most recent LEP bounds, as we will discuss

in section 6) and, moreover, its e�ects on the corresponding Higgs density are damped

by the presence of the Higgsino number violating interaction rate ��. Accordingly, its

contribution to the BAU is small.

A similar calculation for the neutral gaugino-Higgsino system would involve diago-

nalization of the four-by-four neutralino mass matrix, making the analytic resummation

treatment much more involved than for the chargino case. The analysis performed in

Ref. [31], to lowest order in the Higgs mass insertions, showed, as expected from a naive

counting of degrees of freedom, that the neutralinos contribute to the Higgsino current as

half the chargino contribution, with a total e�ect given by 3/2 that of the chargino. After

resummation of the neutralino sector it would be reasonable to expect a total contribution

to the Higgsino current equal to � 3/2 that of the chargino sector. However, and to be

as conservative as possible in our calculation of the baryon asymmetry, we would just

consider as source of baryon number the chargino current (remember that left-handed

squarks are assumed very heavy and decouple from the thermal bath) that was computed

in this section, keeping in mind that an enhancement factor � 3/2 might appear after a

rigorous calculation of the currents in the neutralino sector.

4 The baryon asymmetry

To evaluate the baryon asymmetry generated in the broken phase we need to �rst compute

the density of left-handed quarks and leptons, nL, in front of the bubble wall (in the

symmetric phase). These chiral densities are the ones that induce weak sphalerons to

produce a net baryon number. Since, in the present scenario, there is essentially no lepton

asymmetry, the density to be computed in the symmetric phase 4 is nL = nQ +
P

2

i=1
nQi

where the density of a chiral supermultiplet Q � (q; ~q) is understood as the sum of

densities of particle components, assuming the supergauge interactions to be in thermal

equilibrium, nQ = nq + n~q. If the system is near thermal equilibrium, particle densities,

ni, are related to the local chemical potential, �i by the relation ni = ki�iT
2=6, where ki

are statistical factors equal to 2 (1) for bosons (fermions) and exponentially suppressed

for particle masses mi much larger than T . For the calculation of the density nL we will

use the formalism described in Refs. [30, 31].

We will consider those particle species that participate in fast particle number changing

transitions, neglecting all Yukawa couplings except those corresponding to the top quark.

In this approximation, there is no left-handed lepton number contribution to nL. By

introducing strong sphaleron e�ects, �rst and second family quark number is generated.

Assuming that all quarks have nearly the same di�usion constant it turns out that [30],

nQ1
= nQ2

= 2(nQ + nT ), and then,

nL = 5nQ + 4nT : (4.1)

4We use, for the third family, the notation Q � Q3; T � T3.
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In general we will relate particle number changing, or fermion number violating, rates

�X with the corresponding rates per unit volume X , as,

�X =
6 X

T 3
: (4.2)

The involved weak and strong sphaleron rates are:

�ws = 6�ws �
5

w
T; �ss = 6�ss

8

3
�4
s
T ; (4.3)

respectively, where �ws = 20 � 2 [44] and �ss = O(1). The particle number changing

rates that will be considered both in the symmetric and in the broken phase are: �Y2 ,

corresponding to all supersymmetric and soft breaking trilinear interactions arising from

the htH2QT term in the superpotential, �Y1 , which corresponds to the supersymmetric

trilinear scalar interaction in the Lagrangian involving the third generation squarks and

the Higgs H1, and ��, which corresponds to the �c ~H1
~H2 term in the Lagrangian. There are

also the Higgs number violating and axial top number violation processes, induced by the

Higgs self interactions and by top quark mass e�ects, with rates �h and �m, respectively,

that are only active in the broken phase.

We will write now a set of di�usion equations involving nQ, nT , nH1
(the density of

H1 � (h1; ~h1)) and nH2
(the density of �H2 � (�h2;

~�h2)), and the particle number changing

rates and CP-violating source terms discussed above. In the bubble wall frame, and

ignoring the curvature of the bubble wall, all quantities become functions of z � r + v!t,

where v! is the bubble wall velocity. The di�usion equations are:

v!n
0

Q
=Dqn

00

Q
� �Y

�
nQ

kQ
� nT

kT
� nH + �nh

kH

�
� �m

�
nQ

kQ
� nT

kT

�
�6�ss

�
2
nQ

kQ
� nT

kT
+ 9

nQ + nT

kB

�
+ ~Q (4.4)

v!n
0

T
=Dqn

00

T
+ �Y

�
nQ

kQ
� nT

kT
� nH + �nh

kH

�
+ �m

�
nQ

kQ
� nT

kT

�
+3�ss

�
2
nQ

kQ
� nT

kT
+ 9

nQ + nT

kB

�
� ~Q (4.5)

v!n
0

H
=Dhn

00

H
+ �Y

�
nQ

kQ
� nT

kT
� nH + �nh

kH

�
� �h

nH

kH
+ ~

eH+
(4.6)

v!n
0

h
=Dhn

00

h
+ ��Y

�
nQ

kQ
� nT

kT
� nH + nh=�

kH

�
� (�h + 4��)

nh

kH
+ ~

eH�
(4.7)

where all derivatives are with respect to z, Dq � 6=T and Dh � 110=T are the cor-

responding di�usion constants in the quark and Higgs sectors [46], nH � nH2
+ nH1

,

nh � nH2
� nH1

, kH � kH1
+ kH2

, �Y � �Y2 + �Y1 and ��Y � �Y2 � �Y1 . The parameter

� is in the range 0 � � � 1. In previous analyses [30, 31, 40] the limit �� ! 1 was
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implicitly considered, leading to the solution nh ! 0. However, as we will see, for �nite

values of �� we obtain non-vanishing values of the density nh.

For the sources ~
Q; eH�

in Eqs. (4.4)-(4.7) we will follow the formalism of Refs. [30, 34]

where ~X ' j0
X
=�X , �X being the corresponding typical thermalization time. Thus we will

use as sources of our di�usion equations,

~Q '� v! h
2

t
�
et
Im(At�c) H

2(z)�0(z) fFB(z) + GB(z)g
~
eH+
'� 2 v! g

2 �
e

H
Im(M2�c)

�
H2(z)�0(z) [FF (z) + GF (z)]

+ g2H2(z) cos 2�(z)
�
H(z)H 0(z) sin 2�(z) +H2(z) cos 2�(z)�0(z)

�HF (z)
	

~
eH�
' 2 v! g

2 �
e

H
Im(M2�c)

�
H(z)H 0(z) sin 2�(z) +H2(z) cos 2�(z)�0(z)

��
KF (z) + 2

�
�+ ��

�
HF (z)

	
: (4.8)

Notice that our sources, Eq. (4.8), are proportional to the wall velocity v!, and so die

when the latter goes to zero, which is a physical requirement.

We can �nd an approximate solution for nQ and nT by assuming that �Y and �ss are

fast so that nQ=kQ�nT=kT � (nH + �nh)=kH = O(1=�Y ) and 2nQ=kQ�nT=kT +9 (nQ+

nT )=kB = O(1=�ss). In this case we can write

nQ =
kQ (9kT � kB)

kH (kB + 9kQ + 9kT )
(nH + �nh) +O

�
1

�ss
;
1

�Y

�
nT =� kT (9kQ + 2kB)

kH (kB + 9kQ + 9kT )
(nH + �nh) +O

�
1

�ss
;
1

�Y

�
: (4.9)

If the left-handed third generation squarks were light (mQ � T ) we could expect that all

supersymmetric and supersymmetry breaking interactions arising from the htH2QT term

in the superpotential are in thermal equilibrium and similar in size, so that �Y1 ' �Y2 , or

� � 1. In such case, which was considered in Ref. [42], the inuence of nh in the quark

densities nQ and nT , through Eqs. (4.9), is �-suppressed although this suppression can

be arguably mild depending on the particularly chosen value of �. However, in the case

where left-handed squarks are heavy (mQ � T ), as preferred to get a good agreement

of the MSSM with electroweak precision measurements, their corresponding interactions

decouple, �Y1 ' 0 and � ' 1. This is the case we will consider from here on.

We now take (for � = 1) the linear combinations of Eqs. (4.4), (4.5), (4.6) and (4.7)

which are independent of �Y and �ss. They are given by,

v!
�
n0
Q
+ 2n0

T
� n0

H

�
=Dq

�
n00
Q
+ 2n00

T

��Dh n
00

H
+ �m

�
nQ

kQ
� nT

kT

�
+�h

nH

kH
�
�
~Q + ~

eH+

�
(4.10)

v!
�
n0
Q
+ 2n0

T
� n0

h

�
=Dq

�
n00
Q
+ 2n00

T

�
�Dh n

00

h
+ �m

�
nQ

kQ
� nT

kT

�
+ [�h + 4��]

nh

kH
�
�
~Q + ~

eH�

�
: (4.11)

When nQ and nT are replaced by the explicit solutions of Eqs. (4.9), as functions of nH
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and nh, Eqs. (4.10) and (4.11) yield the system of coupled equations for nH and nh:

v!A
�
n0
H

n0
h

�
= D

�
n00
H

n00
h

�
� G

�
nH
nh

�
+

�
f+
f�

�
(4.12)

where the sources are

f� =
G

F +G

�
~Q + ~

eH�

�
; (4.13)

with

F � 9kQkT + kQkB + 4kTkB

G � kH(9kQ + 9kT + kB) ; (4.14)

and A, D and G are the 2� 2 matrices,

A =

�
1 F

F+G
F

F+G
1

�
; D =

�
Dq +Dh Dq

Dq Dq +Dh

�

G =

�
�m + �h �h

�m �m + �h + 4��

�
; (4.15)

with

Dq � F

F +G
Dq; Dh � G

F +G
Dh

�i �
G

F +G

�i

kH
; (i = m; h; �) : (4.16)

The system (4.12) amounts to equations for nH and nh, with sources induced by ~
eQ

and ~
eH�
, and by the same densities nH;h and their derivatives. It can be re-written as,

v! n
0

H
=Dn00

H
� � nH + f+ +�f+ (4.17)

v! n
0

h
=Dh n

00

h
� [�h + 4��]

nh

kH
+ v! n

0

H
�Dh n

00

H
+ �h

nH

kH
+ ~

eH�
� ~

eH+
(4.18)

where

D =Dq +Dh; � = �m + �h (4.19)

�f+ =� F

F +G
v!n

0

h
+Dq n

00

h
� �m nh : (4.20)

We have solved the system (4.12) numerically and the results are presented in section 5.

However a very useful analytical approximation can be worked out as follows. Using

Eq. (4.6) and the approximate relations (4.9) we can write for nh the following equation,

v! n
0

h
= Dh n

00

h
� [�h + 4��]

nh

kH
+ ~

eH�
: (4.21)
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In this way the equation for nh has been decoupled from the other equations and can be

easily solved. On the other hand, from (4.17) and the expression for �f+, Eq. (4.20), we

see that nh acts as a source for nH , and the equations (4.17) and (4.21) can be solved

analytically.

We will only quote the solutions in the symmetric phase (z < 0) since that would be

needed to compute the baryon asymmetry from nL(z), as we will see. Finally we will

impose boundary conditions nh(�1) and nH(�1) and continuity of the functions and

�rst derivatives at z = 0.

From Eq. (4.21) we obtain the solution for nh(z), for z � 0 as,

nh(z) = Ah e
z�+ (4.22)

where

Ah =
2p

v2
!
+ 4�1Dh +

p
v2
!
+ 4�2Dh

Z
1

0

d� ~
eH�
(�) e���+ (4.23)

and

�� =
1

2Dh

n
v! �

p
v2
!
+ 4�1Dh

o
�� =

1

2Dh

n
v! �

p
v2
!
+ 4�2Dh

o
�2 =

�h + 4��

kH

�1 =
4��

kH
: (4.24)

Note that, from expression (4.24), the coe�cientAh behaves as �
�1=2
� , in the limit of large

��, and so the nh density tends to zero when �� tends to in�nity, as anticipated.

From Eq. (4.17), the solution for nH(z), for z � 0 is given by

nH(z) = AH ez �+ + BH ez v!=D (4.25)

where

BH =A0 + Ah

F

F +G

�
Dq�+ � v!

D

�
1

�+
+

1

�+ � v!=D

�
+

1

D�+

�
v! �Dq(�+ + �+) +

�+ � ��

�+ � �+
F�+(�v! +Dq�+)�G�m=kH

F (�+ � ��)

��
� 1

D�+
A�

1

F +G

�+ � ��
(�+ � �+)(�+ � ��)

[F�+(�v! +Dq�+)�G�m=kH ] (4.26)

and

AH = � Ah

F

F +G

Dq �+ � v!

D�+ � v!
(4.27)
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with

A� =
2p

v2
!
+ 4�1Dh +

p
v2
!
+ 4�2Dh

Z
1

0

d� ~
eH�
(�) e���+

A0 =
1

D�+

Z
1

0

d� f+(z) e
���+ (4.28)

and

�� =
1

2D

�
v! �

q
v2
!
+ 4� D

�
: (4.29)

Since we assume the sphalerons are inactive inside the bubbles, the baryon density is

constant in the broken phase and satis�es, in the symmetric phase, an equation where nL
acts as a source [30] and there is an explicit sphaleron-induced relaxation term [45, 42]

v!n
0

B
(z) = ��(�z) [nF�wsnL(z) +RnB(z)] (4.30)

where nF = 3 is the number of families and R is the relaxation coe�cient [45],

R =
5

4
nF �ws : (4.31)

Eq. (4.30) can be solved analytically and gives, in the broken phase z � 0, a constant

baryon asymmetry,

nB = � nF�ws

v!

Z
0

�1

dz nL(z) e
zR=v! : (4.32)

Using now the explicit solutions for nH and nh given in Eqs. (4.25) and (4.22), we can

cast the explicit solution for the baryon asymmetry as,

nB = nF �ws
5kQkB + 8kTkB � 9kQkT

kH (kB + 9kQ + 9kT )

� AH +Ah

R+ v!�+
+

DBH
DR+ v2

!

�
(4.33)

where all symbols used in Eq. (4.33) have been previously de�ned.

The validity of our analytical approximation is guaranteed by the dominance of nH
over nh, which in turn is related to the tan � suppression of ~

eH�
and the presence of

��. In fact were we working in the limit �� ! 1 we would �nd that the density nh is

negligible. On the other hand, in the limit �� ! 0 and tan� ' 1 we would really expect

nh > nH , due to the dominance of ~
eH�

over ~
eH+
, at least for large values of mA where the

�� suppression of ~
eH+

is more severe. However small values of tan �, as we noticed earlier

in this paper, are strongly disfavored in our scenario by recent LEP bounds on the Higgs

mass. Hence, we have found that the analytical approximation is accurate with an error

which depends on the chosen values of the supersymmetric parameters, but it is always

much smaller than the other uncertainties involved in the �nal calculation. In section 5

we will provide explicit comparison with the numerical result, while all plots will be done

using the numerical solution of system (4.12).
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5 Numerical results

In this section we present the numerical results for the baryon asymmetry computed in

section 4 and, in particular, of the baryon-to-entropy ratio � � nB=s, where the entropy

density is given by,

s =
2�2

45
geff T

3 (5.1)

with geff being the e�ective number of relativistic degrees of freedom. The pro�les H(z),

�(z) have been accurately computed in the literature [15, 27]. For the sake of simplicity,

in this paper we will use a kink approximation [31]

H(z) =
1

2
v(T )

�
1� tanh

�
�

�
1� 2 z

L!

���

�(z) =� � 1

2
��

�
1 + tanh

�
�

�
1 � 2 z

L!

���
: (5.2)

This approximation has been checked to reproduce the exact calculation of the Higgs

pro�les within a few percent accuracy [23], provided that we borrow from the exact

calculation the values of the thickness L!=2� and the variation of the angle �(z) along

the bubble wall, ��, as we will do. In particular we will take � ' 3=2, L! = 20=T , and

we have checked that the result varies only very slowly with those parameters, while we

are taking the values of �� which are obtained from the two-loop e�ective potential used

in our calculation.

The calculation of the wall velocity v! is a very complicated phenomenon involving

the hydrodynamics of the bubble interacting with the surrounding plasma. Some progress

has been recently reported in this direction [47] indicating that, in the case of the MSSM,

the wall is extremely non-relativistic, v! � 1, and can be as slow as v! = 0:01. Unless

explicitly stated, in the numerical analysis of this section, we adopt the value v! = 0:05,

although the variation of the baryon asymmetry with respect to v! will also be analyzed.

The widths, �m, �h and �Y are as in Refs. [30, 31], while we are taking �� ' 0:1T

and � = 1, in agreement with the large value we use for the left-handed third-generation

squark masses,mQ
>
� 1 TeV, which makes them decoupling from the thermal bath. On the

other hand, and consistently with the latter assumption (which is required to render the

MSSM in agreement with the Higgs mass bounds coming from LEP), the contribution to

nB from the squark source, ~Q, is negligible. The \observable" value for � consistent with

Big Bang Nucleosynthesis (BBN) has been considered to be �BBN � 4�10�11 [48]. Finally
we will consider the third generation squark mass and mixing parameters, mQ = 1:5 TeV

and At = 0:5 TeV, and tan � = 20 and have checked that, for all plots in this section, the

phase transition is strong enough �rst order, v(Tc)=Tc >� 1, and the Higgs mass is, within

the accuracy of our calculations,mh ' 110{115 GeV. These values are in rough agreement

with present 95 % C.L. bounds on the Higgs mass coming from LEP, or even with the

present excess of events observed at LEP, consistent with the detection of a SM-like Higgs

at the runs with the highest center of mass energies,
p
s > 206 GeV. We will comment

more about the LEP constraints in the next section.
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Figure 1: Plot of �=�BBN as a function of � for M2 = j�j, mA = 100 GeV (thick solid

curve), mA = 150 GeV (dashed curve) and mA = 200 GeV (dash-dotted curve), and the

rest of parameters as indicated in the text. The thin solid curve corresponds to the case

mA = 100 GeV when the approximate analytical solution in (4.33) is used.

In Fig. 1 we plot the ratio �=�BBN for the values of the supersymmetric parameters that

have just been described,M2 = j�j, sin'� = 1 and several values of the pseudoscalar Higgs

massmA. Therefore, since � is (almost) linear in sin'�, one can read from Fig. 1 the value

of 1= sin'� that would reproduce �BBN. This observation applies to all plots presented

in this section, where we have �xed sin'� = 1. It follows that the region of parameters

where we �nd j�=�BBNj < 1, is forbidden in all plots. For the value mA = 100 GeV, we

have presented both the exact result (thick solid curve), based on the numerical solution

of Eqs. (4.12), and the approximate result (thin solid curve), based on the approximate

analytical solution (4.33). We see that for values where nB=s is sizeable the discrepancy

between the analytical and the numerical result is <� 30 %. For the other curves in Fig. 1,

as well as for the rest of plots in this paper, we will use the (exact) numerical solution of

Eqs. (4.12).

We are, in Fig. 1, close to the resonance region discussed in Ref. [31], which is smoothed

by the all order resummation in Higgs mass insertions. The departure from the resonance

is exempli�ed in Fig. 2, where we plot �=�BBN as a function of � for M2 = 200 GeV,

mA = 150 GeV and the other supersymmetric parameters as in Fig. 1.

In Fig. 3 we plot �=�BBN as a function of mA for M2 = � = 200 GeV (solid curve)

and M2 = 200 GeV, � = 300 GeV (dashed curve), and other supersymmetric parameters

as in Fig. 1. Finally in Fig. 4 we plot �=�BBN as a function of vw for M2 = � = 200

GeV, mA = 150 GeV and the other parameters as in Fig. 1. The maximum of this curve

comes from the interplay between the relaxation and source terms in the equation for nB,

Eq. (4.30).

The numerical results exhibited in the plots of this section are an improvement of
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Figure 2: Plot of �=�BBN as a function of � for M2 = 200 GeV and mA = 150 GeV.

our previous results, Ref. [31], and include the all order resummation of the Higgs mass

insertions in the current determination, as well as inclusion of �nite ��-e�ects in the

di�usion equations. Since the �rst of these e�ects smooths out the resonant behaviour,

which enhances the determination of nB for M2 = j�j, while the second one slightly

enhances nB, our present numerical results are in rough agreement with those of Ref. [31].

On the other hand if we compare our numerical results with the recent ones of Ref. [42],

that use WKB methods and values of � < 1 to deduce the source terms in the di�usion

equations, we observe a discrepancy of a few orders of magnitude. However, we have

been communicated [49] by the authors of Ref. [42] to have detected a problem in their

numerical codes which enhances their numerical results by some orders of magnitude and

that might explain part of this discrepancy. As explained above, large values of mQ,

implying � = 1, are necessary in order to ful�ll the present experimental Higgs mass

bounds.

6 Higgs mass constraints

In this section, we shall comment on the constraints coming from Higgs searches at LEP.

The LEP experiments at CERN have collected data during the year 1999 at various

energies between 192 GeV and 202 GeV, for a total integrated luminosity of about 900

pb�1. A combined limit on the Standard Model Higgs mass of about 108 GeV at the

95 % C.L. was obtained, due to the absence of any signi�cant Higgs signal in the LEP

data [50]. Preliminary results of this year run [51] show that this limit moved up by a

few GeV (up to about 113.2 GeV). More interesting, a slight excess of events, about 3

standard deviations above the SM predictions, has been observed, consistent with a SM

like Higgs in the range of masses of about 113{116 GeV.

The present Higgs mass constraints become particularly relevant for small values of
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M2 = 200; � = 300 GeV (dashed curve).

tan �, tan � < 5. In this case, due to the behaviour of the Higgs boson couplings to

fermions and gauge bosons, the SM Higgs mass constraints translate with almost no vari-

ations into a bound on the lightest CP-even Higgs boson mass 5. For values of v(Tc)=Tc >� 1

and tan � < 5, and for left-handed stop masses smaller than � 3 TeV, the lightest CP-even

Higgs mass never exceeds 105 GeV. Therefore, the mechanism of electroweak baryogenesis

demands either values of tan� > 5 or unnaturally large values of mQ
6.

Large values of tan� move the value of the Higgs boson mass, with relevant couplings

to the gauge bosons, to larger values. However, if the values of the left-handed stop

parameters are restricted to be below 3 TeV, for v(Tc)=Tc >
� 1, the Higgs mass cannot

exceed 115 GeV. Observe that these values are a few GeV higher than those obtained

previously in Ref. [21], since in that reference we restricted ourselves to the case of left-

handed stop masses below 1 TeV. The observed excess of events, with b�b invariant masses

of about 114 GeV, would be consistent with electroweak baryogenesis for large values of

tan � and large values of the left-handed stop mass parameters mQ
>
� 1 TeV, as the ones

considered in the previous section.

What would happen if the excess of events present at LEP would not correspond to

a Higgs signal, but would turn out to be a statistical uctuation with the �nal outcome

of an ultimate exclusion limit for a SM-like Higgs with mass below 115 GeV? To analyze

this, let us stress that at large values of tan� the coupling of this Higgs boson to bottom

5In the presence of CP-violation, the Higgs mass eigenstates will not be CP-eigenstates. In our analysis
we have used the CP conserving structure for the Higgs sector. This should lead to a good approximation
if CP-violating e�ects in the Higgs potential are small, as happens when arg(�cAt) ' 0. A more general
analysis, similar to the one performed in Refs. [52, 53] would be appropriate to consider more general
CP-violating e�ects.

6 We have checked that, for the values of the stop mixing parameters consistent with electroweak
baryogenesis, no signi�cant modi�cation of these bounds is obtained after considering CP-violating e�ects
in the Higgs potential [52].
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Figure 4: Plot of �=�BBN as a function of vw for M2 = � = 200 GeV and mA = 150 GeV.

quarks can be signi�cantly lower than in the SM [54, 52] with a corresponding reduction

of the Higgs mass bound. These variations can only occur for small values of the CP-odd

Higgs mass mA, of order of the lightest CP-even Higgs boson mass. Unlike the case of

small values of tan �, for values of tan � > 10, the values of v(Tc)=Tc are only weakly

dependent on the exact value of mA. Intuitively, this can be understood by the fact

that for large values of tan �, the CP-odd Higgs can be approximately identi�ed with the

imaginary part of the neutral component of the Higgs doubletH1, while the Higgs doublet

which acquires vacuum expectation value is mainly H2 (v2 � v1).

For the values of At and � consistent with electroweak baryogenesis, a reduction of the

coupling of the CP-even Higgs boson to the bottom quark would demand not only small

values of mA ' 100{150 GeV, but also large values of tan � > 10 and of j�Atj=m2
Q
> 0:1

(the larger tan�, the easier suppressed values of the bottom quark coupling are obtained).

We have checked that, assuming small CP-violating e�ects in the Higgs potential and in

the Higgs-fermion couplings, and for values of mQ ' 1 TeV, v(Tc)=Tc >
� 1 and j�j < 500

GeV, a signi�cant reduction of the coupling of the Higgs to bottom quarks only occur

for tan� >
� 30. Therefore, if the excess of events observed at LEP is not associated with

a Higgs signal, strong constraints on the electroweak baryogenesis scenario within the

MSSM will be obtained.

7 Conclusions

In this article, we have performed a computation of the scalar- and fermion- CP-violating

currents induced by the expansion of a true-vacuum bubble in the false vacuum plasma,

within the framework of the minimal supersymmetric standard model. We made use of

the Keldysh formalism and we have de�ned a systematic way of obtaining the currents

in an expansion of derivatives of the Higgs �elds, to all orders of the Higgs background
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insertions.

Although our method is similar to the one previously used by some of us in Ref. [31],

our results di�er from those presented in our previous work in several respects. First

of all, they include a resummation of corrections associated with higher order of the

Higgs background insertions. These corrections have two important e�ects. The �rst one

is to dilute the resonant behaviour obtained in Ref. [31] for values of j�j = M2. The

second one is the appearance of a contribution proportional to H2@
�H1 +H1@

�H2 to the

vector Higgsino current j�
e

H+

(z). This means that, as �rst observed in Refs. [30, 40], the

vector Higgsino current does not vanish for large values of the CP-odd Higgs mass. Our

method provides a way of obtaining the value of this non-vanishing contribution in a self-

consistent way. In addition, we have also computed the axial Higgsino current j
�

e

H�

(z),

whose components are proportional to H2@
�H1+H1@

�H2. Therefore, as �rst observed in

Ref. [42], the chiral current is not suppressed for large values of the CP-odd Higgs mass

and hence may become relevant in this regime.

The vector and axial Higgsino currents, j
�

e

H�

(z), were used to determine the baryon

asymmetry of the Universe, nB=s. The computation of nB demands the solution of di�u-

sion equations, with sources determined through j
�

e

H�

(z). Following the method developed

in Refs. [30, 34], we assumed that the sources are proportional to the temporal component

of the currents, with a constant of proportionality given by the Higgsino width. Within

this approximation, we computed the functional dependence of nB on the soft super-

symmetry breaking parameters and on the bubble wall parameters. The most important

parameters turn out to be the gaugino and Higgsino mass parameters, j�cj and M2, their

relative phase arg(�cM2), (equal to '� in the basis in which M2 is real) as well as the

CP-odd Higgs mass mA and tan�. We have also required that the condition of preserva-

tion of the baryon asymmetry v(Tc)=Tc >� 1 is ful�lled, what demands a light right-handed

stop and, due to the present Higgs mass constraints coming from LEP (see section 6),

also large values of the ratio of Higgs vacuum expectation values, tan � > 5.

Under the above conditions, we have determined the value of nB, compared to the

value predicted by Big Bang Nucleosynthesis, for a value of sin'� = 1. The ratio of the

theoretically obtained to the BBN predicted baryon asymmetry can be reinterpreted as

the inverse of the value of sin'� needed to obtain a value of nB in agreement with the

BBN predictions. We conclude that, for small values of mA ' 100 GeV and j�j ' M2,

values as low as '� ' 0:04 can lead to acceptable values of nB. The predicted value of the

phase '� increases for larger values of mA and/or for j�j 6= M2, but still there is a large

fraction of parameter space in which the computed baryon number is in good agreement

with BBN predictions, for phases such that sin'� ' 0:04{1.

Values of '� >
� 0:04 can lead to acceptable phenomenology if either peculiar cancella-

tions in the squark and slepton contributions to the neutron and electron electric dipole

moments (EDM) occur [55], and/or if the �rst and second generation of squarks are

heavy [56]. This second possibility is quite appealing and, as has been recently demon-

strated [57], leads to acceptable phenomenology, including the dark matter constraints 7.

7Third generation squarks would still contribute to the neutron and electron EDM, via two loop
diagrams involving the would-be CP-odd Higgs boson [58]. These contributions can become sizeable at
large values of tan �, although they tend to be suppressed for small values of the mixing in the stop
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Another important observable which, similarly to the value of the baryon number,

depends on the precise value of the mass parameters in the gaugino, Higgsino and third

generation squark sectors, as well as on the charged Higgs mass, is the rate of the rare de-

cay b! s [59]. For small values of the charged Higgs and stop masses, and for moderate

values of At=mQ and j�j=mQ, the chargino-stop contribution, as well as the charged Higgs

contribution, may become large for large values of tan � [60, 61, 62]. In scenarios with

heavy �rst and second generation squarks, however, avor violation couplings involving

the third generation squarks could be non-negligible [56] and therefore the gluino-sbottom

contributions to this rare decay rate may be enhanced [63]. Since these last contributions

are strongly model dependent, and may be larger than the charged Higgs and chargino-

stop ones, we have not imposed the b! s constraints in our analysis.

Finally, we have discussed the e�ect of the Higgs mass constraints coming from LEP.

The preliminary data coming from the LEP experiments imply a lower bound on the

mass of a SM-like Higgs boson of about 113 GeV. A small excess, consistent with a SM-

like Higgs boson with a mass slightly above that value has also been observed. These

relatively large values of the Higgs mass are consistent with electroweak baryogenesis

within the MSSM if the value of tan � is large, tan� > 5, if the left-handed stops are

heavy mQ
>
� 1 TeV, and if the stop mixing parameter is not small, At

>
� 0:25 mQ. On

the other hand, for these values of the Higgs mass, values of At
>
� 0:4 mQ make the phase

transition weaker, leading to values of v(Tc)=Tc that are in conict with the condition of

preservation of the baryon asymmetry. It is important to emphasize, however, that even

if the CP-even Higgs boson coupling to the gauge boson is SM like, it can evade the LEP

bounds if its coupling to the bottom quark is strongly suppressed, what can occur for

very large values of tan �, tan � >
� 30. More relevantly, if the excess of events at LEP has

its origins in the presence of a SM-like Higgs boson of mass of about 113{115 GeV, one of

the predictions of electroweak baryogenesis, namely the presence of a light neutral Higgs

boson with SM-like couplings to the gauge bosons and a mass not larger than 115 GeV

would have been ful�lled.
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